NCFI spray polyurethane systems are two different liquids in drums, sold as a set. The price of the drum set is based on the pounds of liquid in the drums. When sprayed, the liquids form a solid mass of polyurethane foam. The amount of finished foam that can be created from the drum set is the YIELD, which is measured in board feet (bd ft). One bd ft is one square foot (ft²) of surface area that is one inch thick. When the foam is sprayed at a thickness greater than one inch, the number of square feet (ft²) is multiplied by the inches of thickness. To calculate how much foam you require to complete a job, multiply the square feet of area by the thickness of the foam to be sprayed.

If the area is 1000 ft² and you want to spray the foam 2½" thick, then multiply 1000 ft² x 2½" which equals 2500 bf of foam required to spray the area.

\[
\text{Area to be sprayed} \times \text{Thickness of foam} = \text{Amount of foam required}
\]

The cost of a bd ft of foam is calculated by dividing the price of a drum set of chemicals by the estimated YIELD of the drum set.

If the set of chemicals cost $2000 and the estimated yield is 4000 board feet then:

\[
\text{Cost of chemical set} \div \text{Estimated Yield} = \text{Cost per board foot}
\]

To calculate the cost of chemicals for a job, multiply the cost per bf by the total number of boardfeet required for the job.

\[
\text{Cost per board ft} \times \text{Amount of foam required} = \text{Cost of chemicals for the job}
\]

This calculation applies to any spray system; roofing or insulation.

The numbers used in this example are not to be considered accurate for the cost or yield of a set of chemicals. Contact your NCFI Account Manager for current pricing. See the back page for yield estimates.
Estimated Yield

If you know from experience what yield to expect from a given NCFI Polyurethanes Spray System, use your own figures. The below yields are considered “typical” for job-site conditions. Many factors influence foam yield. Some of these factors which effect foam yield are listed under the table. Your own yield figures calculated from your own job experience will be the most accurate for you.

<table>
<thead>
<tr>
<th>System</th>
<th>Density lb/ft³</th>
<th>Pounds per set</th>
<th>Estimated Board Ft per set</th>
<th>Estimated Board ft/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-011</td>
<td>2.8</td>
<td>1023</td>
<td>2700 - 3000</td>
<td>2.7 - 3.0</td>
</tr>
<tr>
<td>11-015</td>
<td>2.0</td>
<td>1035</td>
<td>3600 - 4000</td>
<td>3.4 - 3.9</td>
</tr>
<tr>
<td>11-016</td>
<td>2.0</td>
<td>1035</td>
<td>3600 - 4000</td>
<td>3.4 - 3.9</td>
</tr>
<tr>
<td>11-017</td>
<td>2.0</td>
<td>1035</td>
<td>3600 - 4000</td>
<td>3.4 - 3.9</td>
</tr>
<tr>
<td>11-018</td>
<td>2.0</td>
<td>1035</td>
<td>3600 - 4000</td>
<td>3.4 - 3.9</td>
</tr>
<tr>
<td>11-019</td>
<td>1.75</td>
<td>1035</td>
<td>4100 - 4600</td>
<td>3.9 - 4.4</td>
</tr>
<tr>
<td>11-020</td>
<td>2.0</td>
<td>1035</td>
<td>3600 - 4000</td>
<td>3.4 - 3.9</td>
</tr>
<tr>
<td>12-002</td>
<td>0.5</td>
<td>1006</td>
<td>14,000 - 16,000</td>
<td>13.5 - 16</td>
</tr>
</tbody>
</table>

FACTORS WHICH REDUCE YIELD

Applying in multiple lifts
Applying to cold surfaces
Applying foam in cold ambient temperatures
Applying foam chemicals not hot enough
Applying foam to rough surfaces
Chemicals not on proper ratio
Applying foam overhead with more fallout
Applying foam in windy conditions
Varying Thickness
Applicator Skill
Loss of Blowing Agent
Inadequate chemical storage condition

FACTORS WHICH INCREASE YIELD

Applying foam at high altitude
Applying foam to hot surfaces
Spraying foam during hot ambient temperatures
Proper Equipment Set up
Use of Regulator Tree on Resin drum
Good applicator technique - minimize overspray
Spray foam systems designed for ambient temperature and location